
NeoFlow Dual Setpoint Pressure Reducing Valve

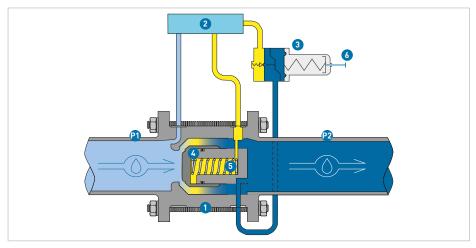
DN50-DN300 / 2"-12"

NeoFlowDual Setpoint Pressure Reducing Valve

Product description

The NeoFlow dual setpoint pressure reducing valve from GF Piping Systems is designed to deliver two distinct pressure setpoints based on a time schedule programmed by the operator. The two distinct setpoints are achieved with two pilot valves, a timer, and a solenoid valve switching between the two pilots. The unit is battery powered with a standard 9V battery that is easily replaceable.

The NeoFlow pressure reducing valve is designed to fit between standard PN10 / PN16 flanges in a wafer-type arrangement. ANSI 150 flange compatibility is also available (excl. DN80).

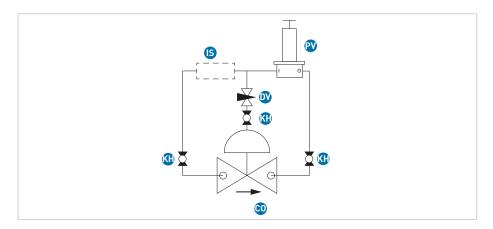

- No actuator stem or diaphragm: Significantly reduced complexity. Low maintenance requirements due to very simple design with few components and no elastomer diaphragm.
- Axial flow: More accurate and very stable flow (down to zero), even at a small operating differential. Higher flow precision, also enabling pressure management in low pressure systems.
- **Smart valve:** Integrated pilot valve to optimize pressure regulation and optional integrated equipment to monitor flow, and water quality.
- Up to 3 high pressure profiles a day: able to be set from 1 min up to 23 h 59 min.
- 9x lighter than a standard metal PRV.
- 5x more compact than a standard metal PRV.
- 40% less time to install than a standard metal PRV.

Application

· Drinking water

Technical basics

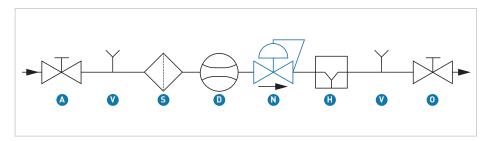
Mode of operation



- 1 Main Body
- 2 Control block
- 3 Pilot valve
- 4 Piston valve
- 5 Control space
- 6 Adjusting screw
- P1 Inlet pressure
- P2 Adjustable outlet pressure

The axial movement of the piston valve (4) in the main body (1) results in flow changes in the NeoFlow pressure reducing valve and thus regulates the existing outlet pressure (P2). The position of the piston valve (4) is regulated by the prevalent pressure of the control area (5).

Turning the adjusting bolt (6) on the pilot valve (3) sets the desired outlet pressure (P2). Depending on the existing outlet pressure (P2), the media flow in the pilot valve is changed (3). A change of the medium flow results in the adjustment of the pressure in the control area (5) via the control block (2). To equalize the pressure, the piston valve (4) moves axially in the main body (1).


Block wiring diagram

- PV Pilot valve
- IS Control block with integrated strainer
- KH Ball valve
- **DV** Damping valve
- CO Controller

Datasheet

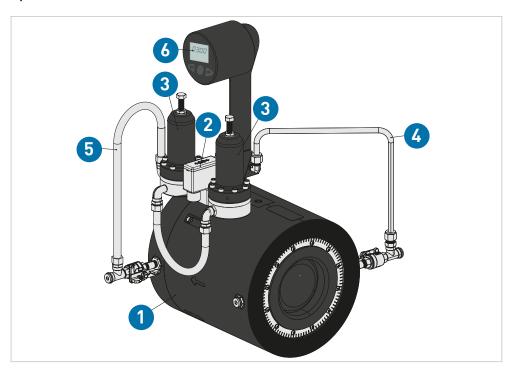
Arrangement of the fittings

- A Shut-off valve, inlet
- S Strainer
- D Flow measurement device
- N NeoFlow pressure reducing valve
- H Hydrant (recommended)
- O Shut-off valve, outlet
- V Air valve
- In order to prevent and, if necessary, remove air from the system, it is recommended that two air valves are installed in the system. The best position is between the inlet valve and the strainer and between the hydrant and the outlet valve or at the highest point of the installation line.
- Installation and maintenance must be carried out in accordance with the corresponding installation instructions. To be found under www.gfps.com/neoflow-manual or under www.gfps.com

Reference values for screw fastening

DN50 - DN300 in ISO-flange connections DIN 2501 / EN 1092 - PN16

DN (mm)	Do2 (mm)	Inch (")	Holes	Bolt metric	ric Mininmum Bolt length (mm)*		Tightening tor- que**
					Metal Flange to Metal Flange	Plastic Flange to Plastic Flange	(Nm)
50	63	2	4	M16	200	230	25
80	90	-	8	M16	230	260	25
100	110	4	8	M16	250	290	30
150	160	6	8	M20	365	415	40
200	225	8	12	M20	420	490	50
250	280	10	12	M24	480	535	80
300	315	12	12	M24	540	595	80


^{*}The screw length is dependently from the used material, please contact your GFPS expert for detailed information concerning your application. It is recommended to use stainless steel bolts, washers, and nuts.

Components and tightening torques can be determined using the online tool "Perfect Flange Connection Tool" under the following link: https://www.gfps.com/perfectflangeconnection

^{**}This torque information is just a reference, the tightening force depends on the materials and specific installation components that are used.

Technical data

Specifications

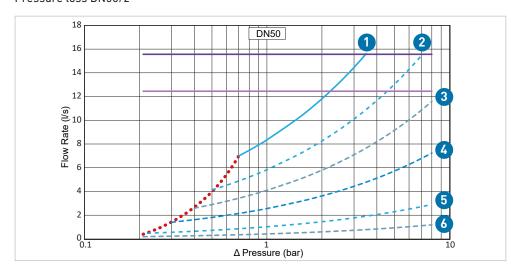
- Main Body 1
- Solenoid valve Pilot valve 2
- Inlet control line
- Outlet control line
- Timer

Dimensions	d63/DN50 - d315/DN300; 2" - 12"				
Materials	Housing	POM-C			
	Piston	POM-C			
	Elastomers	EPDM			
	Fittings	Stainless steel			
	Pilot control	Stainless steel, POM-C, EPDM			
	Solenoid	Brass, EPDM			
Pressure ratings	Maximum inlet pressure P1	16 bar / 232.1 psi*			
	Maximum outlet pressure PH	16 bar / 232.1 psi**			
	Outlet pressure range	0.1 to 16 bar / 1.5 to 232.1 psi**			
	Minimal pressure difference P1– PH	0.2 bar / 2.9 psi***			
	Minimum pressure difference PH - PL	0.5 bar / 7.3 psi			
	Maximum pressure difference PH - PL	15.0 bar / 217.6 psi			
Flanges	Metric: PN10/16 Imperial: ANSI 150				
Valve actuation	Pilot actuated; two mechanical pilot valves IP68 9V latching bistable solenoid valve				
Timer	IP68 9V battery powered timer				
	PA6 body				
	Polycarbonate screen				
Classification acc. to ISO 1043	POM				
Standards	EN1074-1				
	EN1074-5				

^{*}With medium temperature ≤ 20 °C; >20 °C on request

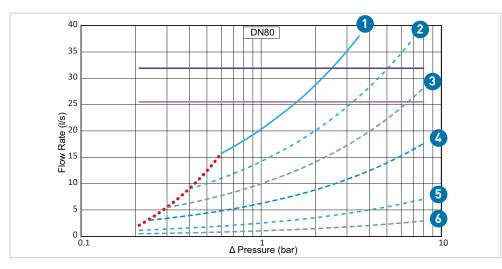
^{**}Depending on the pilot valve type

^{***}Depending on flow and size


Flow characteristics

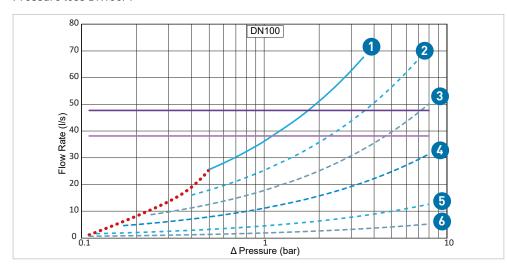
Kv 100-values

DN (mm)	Do2 (mm)	Inch (")	Kv 100 (l/min)	Kv 100 (m³/h)	Cv 100 (US gal./min)
50	63	2	500	30	35
80	90	-	1217	73	84
100	110	4	2167	130	150
150	160	6	4433	266	307
200	225	8	9417	565	653
250	280	10	12883	773	894
300	315	12	16733	1004	1161

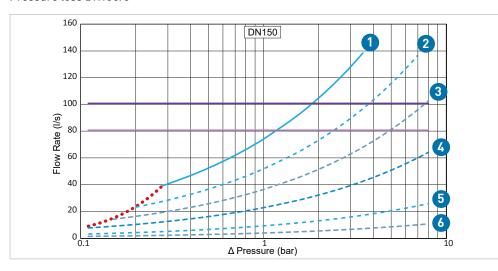

Pressure loss charts

Pressure loss DN50/2"

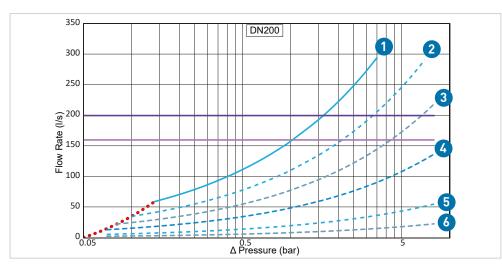
- Maximum open
- 2 80% open
- 3 60% open
- 4 40% open
- 5 20% open
- 6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)


Pressure loss DN80

- Maximum open
- 2 80% open
- 3 60% open
- 4 40% open
- 5 20% open
- 6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)

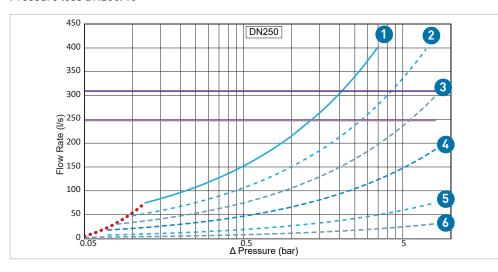

Datasheet

Pressure loss DN100/4"

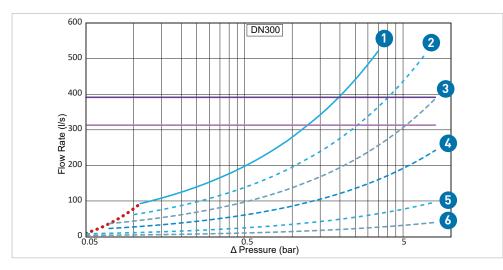

- Maximum open
- 2 80% open
- 3 60% open
- 4 40% open
- 5 20% open
- 6 10% open Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)

Pressure loss DN150/6"

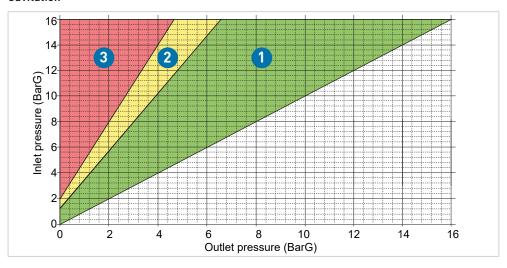
- Maximum open
- 2 80% open
- **3** 60% open
- 4 40% open
- 5 20% open
- 6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)


Pressure loss DN200/8"

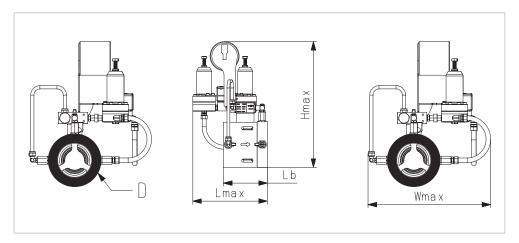
- 1 Maximum open
- 2 80% open
- **3** 60% open
- 4 40% open
- 5 20% open
- 6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)


Datasheet

Pressure loss DN250/10"

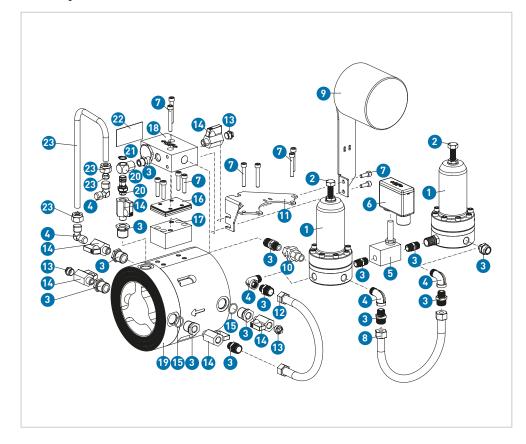

- Maximum open
- 2 80% open
- **3** 60% open
- 4 40% open
- 5 20% open6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)

Pressure loss DN300/12"


- Maximum open
- 2 80% open
- **3** 60% open
- 4 40% open
- 5 20% open
- 6 10% open
- Minimum pressure drop
- Maximum intermittent flow rate (7,5 m/s pipe velocity)
- Maximum continuous flow rate (6 m/s pipe velocity)

Cavitation

- 1 Safe operating region
- 2 Cavitation noise region
- 3 Cavitation damage region


Dimensions

Dimensions			Housing	Housing dimensions						
DN (mm)	Do2 (mm)	Inch (")	D (mm)	L max (mm)	Lb (mm)	H max (mm)	W max* (mm)	Weight (kg)		
50	63	2	105	271	121	387	263	8.0		
80	90	_	134	271	135	418	259	9.3		
100	110	4	162	271	155	445	265	10.1		
150	160	6	218	271	205.5	501	265	14.0		
200	225	8	275	298	298	606	513	25.6		
250	280	10	328	348	348	685	568	38.1		
300	315	12	378	398	398	738	621	54.3		

^{*} Flexible part. Actual width may vary.

Components

- Pilot valve
- 2 Adjusting screw
- 3 Connecting nipple
- 4 90° connection fitting
- 5 Solenoid valve
- 6 Solenoid protection
- 7 Socket head bolt
- 8 Pilot valve connecting line
- 9 Timer
- 10 Socket union
- 11 Pilot system base plate
- 12 Outlet control line
- 13 Plug
- 14 Ball valve
- 15 O-ring seal
- 16 Spacer
- 17 Control block base
- 18 Control block
- 19 Valve body
- 20 Needle valve
- 21 Retaining ring
- 22 Sticker
- 23 Inlet control line

Article numbers

BSP version

Code 1 - 8* (bar [g])	
193 173 031	
193 173 033	
193 173 034	
193 173 037	
193 173 040	
193 173 042	
193 173 043	
	1 - 8* (bar [g]) 193 173 031 193 173 033 193 173 034 193 173 037 193 173 040 193 173 042 193 173 043

^{* 0 - 8.5} bar for DN200 - DN300

Pressure ranges of the pilot valve springs

Color coding Pilot valve spring	Pressure range Adjustable (bar [g])	Pressure range Adjustable (psi [g])	Sensitivity of the setting (bar/revolution)	Sensitivity of the setting (psi/revolution)
Black*	1 - 8	14.5 - 116	0.43	6.2

^{*}Standard version, 0 - 8.5 bar / 14.5 - 123 psi for DN200-DN300

Note: Pressure ranges 0-3 bar (only DN50 - DN150), 1-13.5 bar (only DN200 - DN300), and 1-16 bar are available on request.

The information and technical data (altogether "Data") herein are not binding, unless explicitly confirmed in writing. The Data neither constitutes any expressed, implied or warranted characteristics, nor guaranteed properties or a guaranteed durability. All Data is subject to modification. The General Terms and Conditions of Sale of Georg Fischer Piping Systems apply.

11/2023-A

© Georg Fischer Piping Systems Ltd, 8201 Schaffhausen/Switzerland Tel. +41 52 631 11 11 • www.gfps.com • E-Mail: info.ps@georgfischer.com

