

NeoFlow Druckreduzierventil

DN50-DN300 / 2"-12"

NeoFlow Druckreduzierventil

Produktbeschreibung

Das pilotgesteuerte NeoFlow Druckreduzierventil von GF Piping Systems eignet sich zur automatischen Druck- und Durchflussregelung in Netzen für die Versorgung und Verteilung von Wasser. Das NeoFlow Druckreduzierventil ist so konzipiert, dass es zwischen PN 10- / PN 16-Standardflanschen in einer Zwischenflanschanordnung platziert werden kann. Die ANSI 150-Flanschkompatibilität ist ebenfalls gegeben.

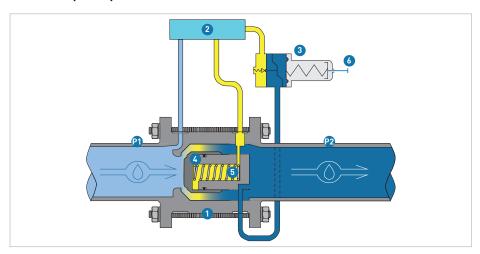
Keine Antriebsstange oder Membrane: Deutlich reduzierte Komplexität. Geringer Wartungsaufwand durch sehr einfachen Aufbau mit wenigen Bauteilen und ohne Elastomer-Membran.

Axialer Durchfluss: Genauer und sehr stabiler Durchfluss (bis auf Null), auch bei kleiner Betriebsdifferenz. Höhere Durchflusspräzision, die auch Druckmanagement in Niederdrucksystemen ermöglicht.

Intelligentes Ventil: Integriertes Vorsteuerventil zur Optimierung der Druckregelung und optional integrierte Geräte zur Überwachung von Durchfluss und Wasserqualität.

9x Leichter als ein Standard-Metallventil.

5x kompakter als ein Standard-Metallventil.

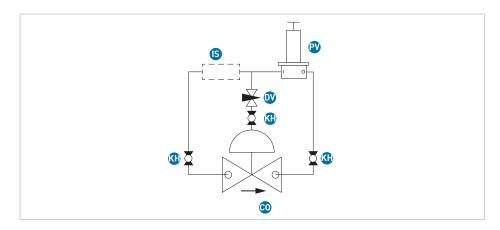

40% weniger Zeit für die Installation als für ein Standard-Metallventil.

Applikationen

Trinkwasser

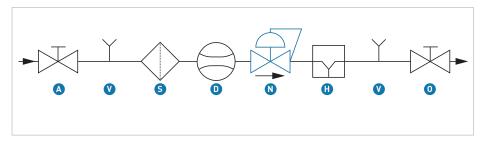
Technische Grundlagen

Funktionsprinzip



- 1 Hauptkörper
- 2 Steuerblock
- 3 Pilotventil
- 4 Ventilkolben
- 5 Steuerraum
- 6 Einstellschraube
- P1 Eingangsdruck
- P2 Ausgangsdruck einstellbar

Die axiale Bewegung des Ventilkolbens (4) im Hauptkörper (1) führt zu Durchflussänderungen im NeoFlow Druckreduzierventil und reguliert somit den anliegenden Ausgangsdruck (P2). Die Position des Ventilkolbens (4) wird durch den vorherrschenden Druck im Steuerraum (5) geregelt.


Durch Drehen der Einstellschraube (6) am Pilotventil (3) wird der gewünschte Ausgangsdruck (P2) eingestellt. Abhängig vom anliegenden Ausgangsdruck (P2) ändert sicht der Medienfluss im Pilotventil (3). Eine Änderung des Medienflusses führt zur Anpassung des Drucks im Steuerraum (5) über den Steuerblock (2). Zum Druckausgleich bewegt sich der Ventilkolben (4) axial im Hauptkörper (1).

Blockschaltbild

- PV Pilotventil
- IS Steuerblock mit integriertem Schmutzfänger
- KH Kugelhahn
- **DV** Dämpfungsventil
- CO Regler

Anordnung der Armaturen

- Es wird empfohlen, zwei Entlüftungsventile in das System einzubauen. Diese dienen zum Be- und Entlüften des Systems. Die dafür geeignete Position liegt zwischen der eingangsseitigen Absperrarmatur und dem Schmutzfänger und dem Hydranten/Abzweig und ausgangsseitigen Absperrarmatur oder am höchsten Punkt der Installationsleitung.
 - Die Installation und Wartung muss gemäss der entsprechenden Installationsanleitung ausgeführt werden. Zu finden unter: www.gfps.com/neoflow-manual oder auf www.gfps.com/

- A Absperrarmatur eingangsseitig
- S Schmutzfänger
- D Durchflussmessgerät
- N NeoFlow

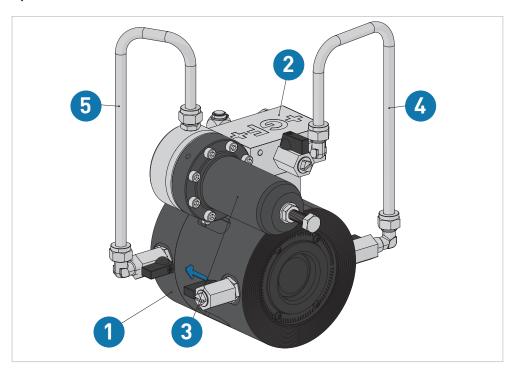
Druckreduzierventil

- H Hydrant/Abzweiger (empfohlen)
- O Absperrarmatur ausgangsseitig
- V Belüftungsventil (empfohlen)

Richtwerte für die Schraubenbefestigung

DN50 - DN300 in ISO-Flanschverbindungen DIN 2501 / EN 1092 - PN16

DN	Do2	Zoll	Bohrungen	Schraube	Minimale Schrauben	Anzugsmoment**	
(mm)	(mm)	(")		metrisch	Metall-Flansch zu Metall-Flansch	Kunststoff-Flansch zu Kunststoff-Flansch	(Nm)
50	63	2	4	M16	200	230	25
80	90	3	8	M16	230	260	25
100	110	4	8	M16	250	290	30
150	160	6	8	M20	365	415	40
200	225	8	12	M20	420	490	50
250	280	10	12	M24	480	535	80
300	315	12	12	M24	540	595	80


^{*}Die Schraubenlänge ist abhängig vom verwendeten Material, bitte kontaktieren Sie Ihren GFPS-Experten für detaillierte Informationen zu Ihrer Anwendung. Es wird empfohlen, Schrauben, Unterlegscheiben und Muttern aus rostfreiem Stahl zu verwenden.

Komponenten und Anzugsmomente können über das Online Tool "Perfekte Flanschverbindung" unter folgendem Link ermittelt werden: https://www.gfps.com/perfectflangeconnection

^{**} Diese Drehmomentangaben dienen als Anhaltspunkt, das Anzugsmoment hängt von den verwendeten Materialien und spezifischen Installationskomponenten ab.

Technische Daten

Spezifikationen

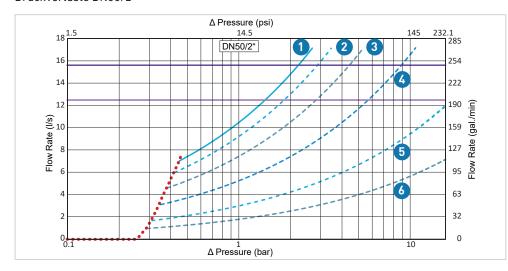
- l Hauptkörper
- 2 Steuerblock
- 3 Pilotventil
- 4 Eingangsseitige Steuerleitung
- 5 Ausgangsseitige Steuerleitung

Spezifikationen		
Dimensionen	d63/DN50 – d315/DN300, 2" – 12"	
Werkstoffe	Gehäuse	POM-C
	Kolben	POM-C
	Elastomere	EPDM
	Fittings	Edelstahl
	Pilotsteuerung	Edelstahl, POM-C, EPDM
Druckstufen	Maximaler Eingangsdruck P1	16 bar / 232.1 psi*
	Maximaler Ausgangsdruck P2	16 bar / 232.1 psi**
	Ausgangsdruckbereich	0,1 bis 16 bar / 1.5 bis 232.1 psi**
	Minimale Druckdifferenz P1-P2	0,2 bar / 2.9 psi***
Flansche	Metrisch: PN10/16	
	Imperial: ANSI 150	
Ventilsteuerung	Pilot gesteuert; Mechanisch gesteu	iertes Pilotventil
Klassifikation nach ISO 1043	POM	
Normen	EN1074-1	
	EN1074-5	

^{*}Bei Mediumtemperatur ≤ 20°C; >20°C auf Anfrage

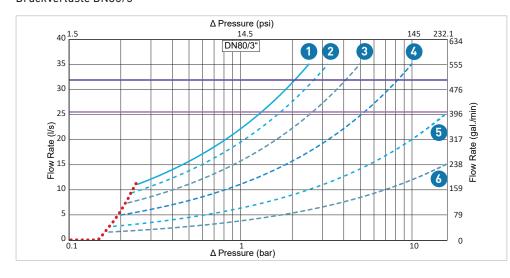
^{**}Abhängig vom Pilotventil-Typ

^{***}Durchfluss- und grössenabhängig

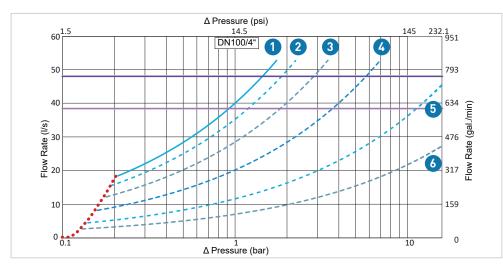

Durchflusscharakteristik

Kv 100-Werte

DN (mm)	Do2 (mm)	Zoll (")	Kv 100 (l/min)	Kv 100 (m³/h)	Cv 100 (US gal./min)
50	63	2	633	38	44
80	90	3	1333	80	93
100	110	4	2383	143	165
150	160	6	5317	319	369
200	225	8	9417	565	653
250	280	10	12883	773	894
300	315	12	16733	1004	1161


Druckverlustdiagramme

Druckverluste DN50/2"


- Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

Druckverluste DN80/3"

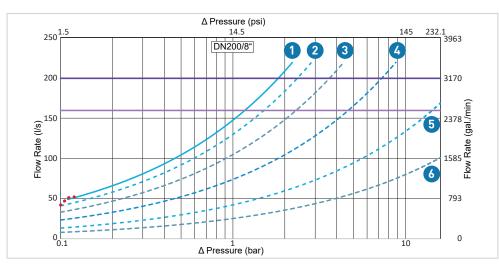
- Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

Druckverluste DN100/4"

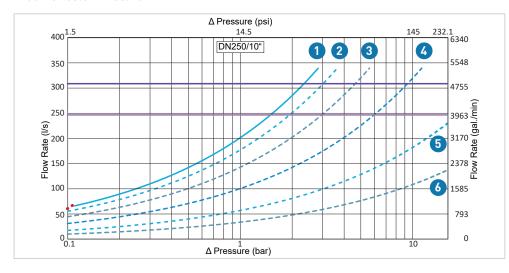


Maximal offen

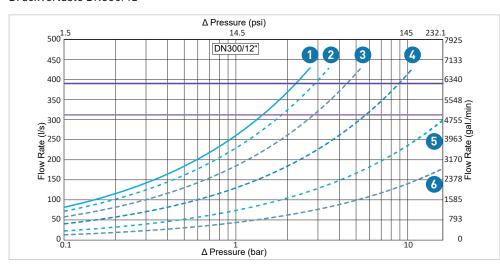
10% offen


- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

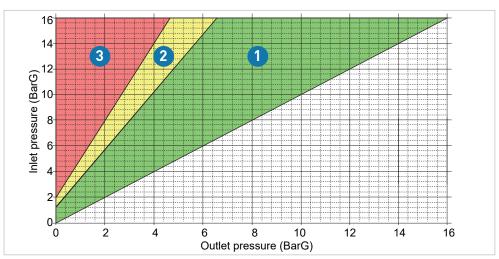
Druckverluste DN150/6"


- Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

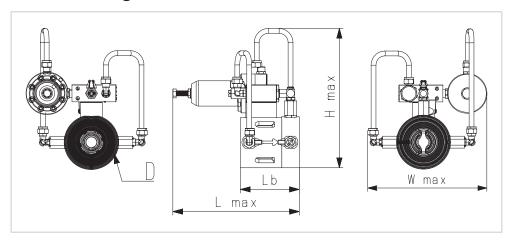
Druckverluste DN200/8"


- Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche
 Durchflussmenge (6 m/s
 Rohrgeschwindigkeit)

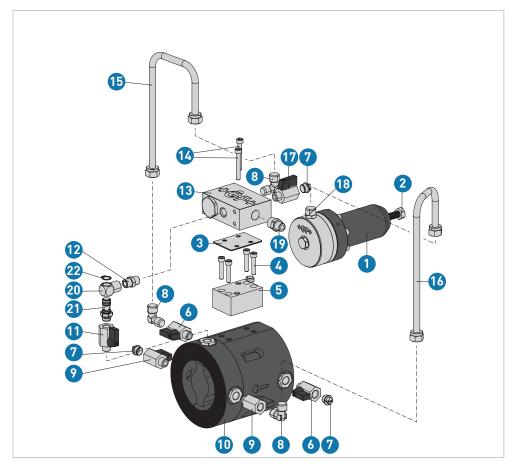
Druckverluste DN250/10"


- 1 Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

Druckverluste DN300/12"


- Maximal offen
- 2 80% offen
- 3 60% offen
- 4 40% offen
- 5 20% offen
- 6 10% offen
- Minimaler Druckabfall
- Maximale intermittierende Durchflussmenge (7,5 m/s Rohrgeschwindigkeit)
- Maximale kontinuierliche Durchflussmenge (6 m/s Rohrgeschwindigkeit)

Kavitation


- Sicherer Betriebsbereich
- 2 Kavitationsbedingte Störungen
- 3 Kavitationsschäden

Abmessungen

Dimensionen			Abmessungen					NPT Abmessungen		
DN (mm)	Do2 (mm)	Inch (")	D (mm)	L max (mm)	Lb (mm)	H max (mm)	W max (mm)	Gewicht (kg)	H max (Zoll)	W max (Zoll)
50	63	2	105	266	121	283	240	5.2	12	10
80	90	3	134	289	135	318	253	6.1	13	11
100	110	4	162	287	155	337	274	7.6	14	11
150	160	6	218	289	230	385	340	12.7	16	14
200	225	8	275	298	298	406	485	22.3	18	21
250	280	10	328	348	348	510	550	34.8	20	24
300	315	12	378	398	398	596	640	51.0	22	25

Aufbau

- Pilotventil
- 2 Einstellschraube
- 3 Distanzplatte
- 4 Innensechskant-schraube M6x25
- 5 Basis Steuerblock
- 6 Kugelhahn Eingangsseitig
- 7 Verschlussstopfen
- 8 Verschraubung 90°
- Kugelhahn Ausgangsseitig
- 10 Hauptkörper
- 11 Kugelhahn Steuerraum
- 12 Übergangsnippel Ventilkammer
- 13 Steuerblock
- 14 Verschraubung Steuerblock
- 15 Steuerleitung Eingangsseitig
- 16 Steuerleitung Ausgangsseitig
- 17 Kugelhahn Steuerblock
- 18 Einschraub-verschraubung gerade
- 19 Übergangsnippel Pilot
- 20 Dämpfungsventil-Manschette
- 21 Dämpfungsventil
- 22 Klemmring

Artikelnummern

BSP Version

DN (mm)	Code 0 - 3 (bar [g])	Code 1 - 8* (bar [g])	Code 1 - 13.5 (bar [g])	Code 1 - 16 (bar [g])
50	193 175 111	193 175 011		193 175 211
80	193 175 113	193 175 013		193 175 213
100	193 175 114	193 175 014		193 175 214
150	193 175 117	193 175 017		193 175 217
200		193 173 020	193 173 420	193 173 620
250		193 173 022	193 173 422	193 173 622
300		193 173 023	193 173 423	193 173 623

^{* 0 - 8.5} bar für DN200 - DN300

NPT Version

Zoll (")	Code 0 - 43.5 (psi [g])	Code 14.5 - 116* (psi [g])	Code 14.5 - 195 (psi [g])	Code 14.5 - 232 (psi [g])
2	193 174 811	193 174 711		193 174 911
3	193 174 812	193 174 713		193 174 913
4	193 174 812	193 174 714		193 174 914
6	193 174 817	193 174 717		193 174 917
8		193 174 020	193 174 420	193 174 620
10		193 174 022	193 174 422	193 174 622
12		193 174 023	193 174 423	193 174 623

^{* 0 - 123} psi für 8" - 12"

Druckbereiche der Pilotventilferdern

Farbcodierung Pilotventilfeder	Druckbereich einstellbar (bar [g])	Druckbereich einstellbar (psi [g])	Empfindlichkeit der Einstellung (bar/Umdr hung)	Empfindlichkeit der e- Einstellung (psi/Umdre- hung)
Silber	0 - 3*	0 - 43.5	0.18	2.6
Schwarz**	1 - 8	14.5 - 116	0.43	6.2
Blau	1 - 13.5***	14.5 - 195***	0.65	9.4
Rot	1 - 16	14.5 - 232	1.53	21.8

^{*}Nur für DN50 - DN150

In Zusammenarbeit mit OFUI entwickelt

Die hierin enthaltenen Informationen und technischen Daten (insgesamt "Daten") sind nicht verbindlich, sofern sie nicht ausdrücklich schriftlich bestätigt werden. Die Daten begründen weder ausdrückliche, stillschweigende oder zugesicherte Merkmale noch garantierte Eigenschaften oder eine garantierte Haltbarkeit. Änderungen aller Daten bleiben vorbehalten. Es gelten die Allgemeinen Verkaufsbedingungen der Georg Fischer Piping Systems.

06/2024-A

© Georg Fischer Piping Systems Ltd, 8201 Schaffhausen/Schweiz Tel. +41 52 631 11 11 • www.gfps.com • E-Mail: info.ps@georgfischer.com

^{**}Standard Version, 0 - 8.5 bar / 14.5 - 123 psi für DN200-DN300

^{***}Nur für DN200 - DN300